Five years Integrated M.Sc. Mathematics (Semester - 3)
Assessment Policy
060090308: CC5 Real Analysis

Assessment Code	Assessment Type	Duration of each	Occurrence	Each of marks	Weightage in CIE of 40 marks	Remarks
A1	Unit Test	90 minutes	2	30	Unit Test 1: - After the completion of whole unit 1 and Unit 2 (i.e. 2.1, 2.2, 2.3, 2.4) Unit Test 2: - After the completion of Unit 2 $(2.5,2.62 .6,2.8, ~ 2.9) ~ a n d ~ w h o l e ~ U n i t ~ 3 ~$	
A2	Internal Exam	3 hours	1	14	Cover Unit: - All Units	
A3	Assignment	15 Days	4	60	$14 \times 1=14$	
A4	Presentation/Viva	20 Minutes	1	10	$1.75 \times 4=7$	Cover Unit: - All Units

Assessment Type Classification:

Assessment Code:	A1	Coverage of Content :	From whole unit 1 and Unit 2 (i.e. 2.1, 2.2, 2.3, 2.4)
Assessment Type:	Unit Test 1	Tentative Date:	9-8-2019 to 14-8-2019
Kind of Question Format:	Q1(A) Answer the following Q1(B) Answer the following. (Any 1) Q1(C) Answer the following. (Any 2) Q2(A) Answer the following Q2(B) Answer the following. (Any 1) Q2(C) Answer the following. (Any 2)	$\begin{aligned} & {\left[\begin{array}{lll} 1 & X & 2 \end{array}=2\right]} \\ & {[1 \times 3=3]} \\ & {[2 \times 3=10]} \\ & {[1 \times 2=2]} \\ & {[1 \times 3=3]} \\ & {[2 \times 5=10]} \\ & \hline \end{aligned}$	
Assessment:	Formative		

Assessment Code :	A1	Coverage of Content :	From Unit 2 (2.5, 2.6 2.6, 2.8, 2.9) and whole Unit 3
Assessment Type :	Unit Test 2	Tentative Date :	16-9-2019 to 19-9-2019

Course Outcomes: Upon completion of the course, students shall be able to
CO1: define and recognize the basic properties of the field of real numbers.
CO2: demonstrate an understanding of limits and how they are used in continuity, differentiability, sequences, and series.
CO3: formulate characterizations of continuity in terms of convergent sequences and in terms of limits of functions.
CO4: define the limit of a function at a value, a limit of a sequence, and the Cauchy criterion.
CO5: state various convergence tests for series (e.g. comparison test or the ratio test) and use them to detect convergence or divergence of series.
CO6: apply the theorem in a correct mathematical way.

Programme Outcomes (PO)

P01: Knowledge

Provides knowledge about the fundamentals of pure, applied and computing mathematics and its applications to students that creates the opportunities in industries and research centers.

P02: Core Competence

Creates competency in science and mathematics to formulate, analyses and solve problem and/or also to pursue advanced study or research.

P03: Breadth

Trains students having good knowledge in unearth core of academia and industry by the roots of mathematics.

P04: Evaluation

Imparts in students to raise trial and error-based curiosity and problem-solving functionality with research based advanced tutorial for higher level decision makings tools.

Assessment Code	Course Outcomes					Programme Outcomes				
	CO1	CO2	CO3	CO4	CO5	CO6	PO1	PO2	PO3	PO4
A1	\checkmark		\checkmark	\checkmark						
A2	\checkmark									
A3		\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
A4		\checkmark			\checkmark	\checkmark		\checkmark	\checkmark	

